Scientific Note

Synthesis of Alanine and Leucine by Reductive Amination of 2-Oxoic Acid with Combination of Hydrogenase and Dehydrogenase

FUMIHIKO HASUMI,¹ KATSUNORI FUKUOKA,¹ SHUICHI ADACHI,¹ YASUMITSU MIYAMOTO,¹ AND ICHIRO OKURA *.²

¹Department of Chemistry and Biochemistry, Numazu College of Technology, Numazu, Shizuoka 410, Japan; and ²Department of Bioengineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, 227, Japan

Received October 3, 1994; Accepted March 6, 1995

ABSTRACT

Alanine synthesis by reductive amination of pyruvate was performed by the combination of NADH regeneration system and alanine dehydrogenase (AlaDH). The conversion of pyruvate to alanine was 99% after 1 h. Leucine synthesis was also carried out by the combination of NADH regeneration system and leucine dehydrogenase (LeuDH). The conversion of 4-methyl-2-oxovalerate to leucine was 60% after 1.5 h.

Index Entries: Hydrogenase; alanine dehydrogenase; leucine dehydrogenase; NAD+; hydrogenation.

INTRODUCTION

Enzymatic NADH regeneration system has been established with the hydrogenase from *Alcaligenes eutrophus* by hydrogen gas as a reducing agent (1–3). The enzymatic systems are of great advantage to produce

^{*}Author to whom all correspondence and reprint requests should be addressed.

342 Hasumi et al.

Scheme 1. Alanine and Leucine formation by the combination of hydrogenase and dehydrogenase.

compounds with a high optical purity. In this study, synthesis of alanine and leucine by a combination of the above regeneration system and the corresponding dehydrogenase is shown in the following scheme.

MATERIALS AND PROCEDURES

The hydrogenase from A. eutrophus was partly purified according to the literature (4). The activity (1 U) of hydrogenase used was to reduce 1 μ mol of NAD+ for 1 min. AlaDH from Bacillus subtilis and LeuDH from Bacillus sphaerious were obtained from Sigma Co.

Alanine formation reaction was carried out as follows. The sample solution, which consisted of hydrogenase, NAD+, AlaDH, pyruvate, and ammonia in phosphate buffer (pH 9.0), was deaerated by repeated freeze-pump-thaw cycles. The reaction was carried out at 30°C by the introduction of hydrogen gas into the above system. The leucine formation was attempted as follows. The sample solution contained hydrogenase, NAD+, LeuDH, 4-methyl-2-oxovalerate, and ammonia in a phosphate buffer (pH 9.0). The reaction was carried out at 30°C by the introduction of hydrogen

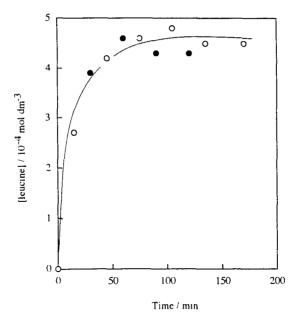


Fig. 1. Time dependence of leucine formation. The sample solution (10 mL) contains hydrogenase (3.3 μ), ammonia (8.0 \times 10⁻⁴ mol dm⁻³), 4-methyl-2-oxovalate (8.0 \times 10⁻⁴ mol dm⁻³), LeuDH (10 μ), and NAD+; •: 3.8 \times 10⁻⁵ mol dm⁻³; \bigcirc : 3.8 \times 10⁻⁴ mol dm⁻³. The reaction was carried out under hydrogen atmosphere (500 torr) at 30°C.

gas into the above system. Alanine and leucine were analyzed by HPLC with the Nucleocil 5C18 (Chemco Scientific) column using 50% methanol and 50% 50 mM phosphate buffer (pH 7.5) mixed solution as eluate. The sample solution was deproteinized with sodium tungstate solution, and the remaining ammonia was removed by vacuum evaporator at 50% in advance.

RESULTS AND DISCUSSION

Leucine Formation

When hydrogen gas was introduced into the system containing hydrogenase, NAD+, 4-methyl-2-oxovalate, ammonia, and LeuDH, reductive amination of 4-methyl-2-oxovariate to leucine proceeded as shown in Fig. 1. Leucine formation rate or conversion of 4-methyl-2-oxovariate to leucine was independent of NAD+ concentration, showing that rate determining step for leucine formation is the reductive amination of 4-methyl-2-oxovariate by LeuDH. When the reaction was carried out at 30°C with the sample solution containing hydrogenase (3.3 μ), LeuDH (10.0 μ), 4-methyl-2-oxovariate (7.9 × 10⁻⁴ mol dm⁻³), ammonia (8.0 × 10⁻⁴ mol dm⁻³), and NAD+ (3.8 × 10⁻⁴ mol dm⁻³) under hydrogen atmosphere (500 torr), and

344 Hasumi et al.

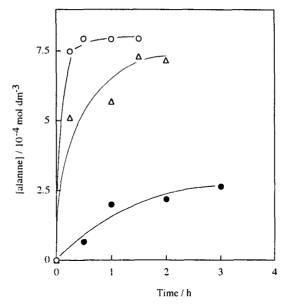


Fig. 2. Time dependence of alanine formation. The sample solution (10 mL) contains hydrogenase (3.3 μ), NAD+ (3.8 \times 10⁻⁴ mol dm⁻³), ammonia (1.6 \times 10⁻³ mol dm⁻³), pyruvate (8.0 \times 10⁻⁴ mol dm⁻³), AlaDH (20 μ) and oxamate; \bullet : 0 mol dm⁻³; \triangle : 8.0 \times 10⁻⁵ mol dm⁻³; \bigcirc : 8.0 \times 10⁻⁴ mol dm⁻³. The reaction was carried out under hydrogen atmosphere (500 torr) at 30°C.

conversion of 4-methyl-2-oxovariate to leucine was 60% after 1.5 h and the turnover number of NAD+ was 11.

Alanine Formation

Partly purified hydrogenase contains lactate dehydrogenase, which serves as a catalyst for pyruvate reaction (3). To prevent lactate dehydrogenase activity, oxamate was introduced to the system. When hydrogen gas was introduced into a system containing hydrogenase, NAD+, pyruvate, ammonia, and AlaDH, reductive amination of pyruvate to alanine proceeded as shown in Fig. 2. No by-products were observed. Alanine formation rate increased with NAD+ concentration and reached a constant value. When 8.0×10^{-4} mol dm⁻³ NAD+ was used, the conversion of pyruvate was 99% after 1 h and the turnover of NAD+ was 10.

From the above results, leucine and alanine synthesis by reductive amination of appropriate 2-oxoic acids with the combination of hydrogenase and corresponding dehydrogenase were accomplished.

REFERENCES

- 1. Klibanov, A. M. and Puglisi, A. V. (1980), Biotechnol. Lett. 2, 445.
- Okura, I., Otsuka, K., Nakada, N., and Hasumi, F. (1990), Appl. Biochem. Biotechnol. 24/25, 425.
- 3. Nakada, N., Okura, I., and Hasumi, F. (1992), J. Mol. Catal. 75, 23.
- 4. Schneider, K. and Schlegel, H. G. (1976), Biochem. Biophys. Acta 452, 66.